
Problem Set XI Solutions 
Fall 2006 Physics 200a 

 
1. How much heat is needed to convert 1 kg of ice at -10oC to steam at 100oC?  

Remember ice and water do not have the same specific heat. 
 
In general the heat necessary to warm a material that doesn’t change phase is: 
 Q = mcT !!"  
Where here the temperature change is in Kelvin, the specific heat c is in J/kg!K, and the 
mass is in kg.  Also in general, the energy required to change the phase of a mass m with 
heat of transformation L is: 

Q = mL !  
The heat necessary to warm the ice to 0oC is: 

Qice = # $ # $kg
Kkg
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 = 20.5 kJ  

We can look up the heat of fusion of water to get: 
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The heat then necessary to warm the water from 0oC to 100oC is: 

Qwater
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 = 418.4 kJ 

And finally, we look up the heat of vaporization of water getting: 

Qwater+steam = # $kg
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So, the total heat needed is: 
Qtotal = Qice + Qice+water + Qwater + Qwater+steam 

Qtotal = 20.5 kJ + 334 kJ + 418.4 kJ + 2257 kJ , 3030 kJ 
 
 

2. If 400g of ice at -2oC is placed in 1 kg of water at 21oC what is the end product when 
equilibrium is reached? 
 
First we need to determine if the ice will completely melt.  To do this we find the heat 
necessary to warm the ice to 0oC and then to melt it with the same method as in Prob. 1. 
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 = 1.64 kJ 

Qice+water = # $kg
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Qmelt = Qice + Qice+water = 135.24 kJ 
The maximum amount of heat that the water can give before beginning to freeze is: 



Qwater = # $ # $kg
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 = 87.864 kJ 

Since this is smaller than the amount of heat necessary to completely melt but far more 
than the amount necessary to warm the ice to 0oC we now know that the water will warm 
all of the ice to 0oC and melt some fraction of the ice.  We already know that 1.64 kJ is 
necessary to warm the ice to 0oC, so the remaining 86.224 kJ available from the water 
will go toward melting the ice.  The amount of ice melted is then: 

fL
Qm -

kgkJ
kJ

334
224.86

- , 258 g 

Thus we’re left with about 1.258 kg of water and 0.142 kg of ice, all at 0oC. 
 
 

3. To find cx, the specific heat of material X, I place 75g of it in a 30g copper 
calorimeter that contains 65g of water, all initially at 20oC.  When I add 100g of 
water at 80oC, the final temperature is 49oC.  What is cx? 
 
Here we want to make use of conservation of energy, namely the heat absorbed by the 
original amount of material X, the calorimeter and the initial water is equal to the heat 
lost by the added hot water.  This gives us the equation: 

(mxcx + mcopperccopper + mwatercwater) !tinitial.components = mhot.waterchot.water!thot.water 
where both temperature changes are positive numbers. 
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If we look up values for the specific heats of water and copper, we can now solve this 
equation. 
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4. How many moles of ideal gas are there in a room of volume 50m3 at atmospheric 
pressure and 300K? 
 
The ideal gas law tells us that PV = nRT.  Noting that Earth’s normal atmospheric 
pressure is 1.013!567Pa and solving for the number of moles, n gives: 
 

n = 
RT
PV = # $# $

# $K
molK
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5. A spherical air bubble of radius 2cm is released 30m below the surface of a pond at 
280K.  What is its volume when it reaches the surface, which is at 300K assuming it 
is in thermal equilibrium the whole time?  Ignore the size of the bubble compared to 
other dimensions like 30m. 
 
Using the ideal gas law and the fact that neither the universal gas constant R nor the 
number of moles of air are changing we can write the relation: 
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Which is easily solved for the final volume: 
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The initial volume is easily found since we know that the volume of a sphere is: 
3

3
4 rVsphere 8-  

Since we can ignore the size of the bubble compared to the other length scales in the 
problem, the final pressure is just the atmospheric pressure, and the initial pressure is the 
atmospheric pressure plus the pressure from the water.  Generalizing for a fluid density " 
and depth h: 

Pf = Patm 
Pi = Patm + !gh 

Since the initial and final temperatures were specified in the problem we can now get a 
solution. 

# $302.
3

4 mVf
8

-
# $# $# $

/
0

1
2
3

4
!

9!
Pa

msmmkgPa
5

235

10013.1
308.9100010013.1

%
&
'

(
)
*

K
K

280
300  

Vf , 1.4:!:10-4 m3 

 
 

6. What is the volume of one mole of an ideal gas at STP:  Standard Temperature 
(273K) and Pressure (1 atmosphere)? 
 
The ideal gas law tells us that PV = nRT.  We also know that 1 atmosphere = 1.013!567Pa 
and that R = 8.314 J/mol!K.  So: 

# $ # $

Pa

K
Kmol
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7. One mole of ideal Nitrogen gas is at 2 atmospheres and occupies a volume of 10m3.  
Find T in Kelvin, U the internal energy (assumed to be just kinetic energy) in Joules, 
and the typical velocity of the gas molecules which have a mass 4.65:!:10-26kg? 
 
We can find the temperature in Kelvin after simple manipulation of the ideal gas law. 
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matmPaatm
nR
PVT
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1010013.12 35

, 244000 K 

(Although this is clearly a very high temperature, the idea gas law is still valid since the 
density is low.) 
 
If we assume that the internal energy is just kinetic energy then kinetic theory tells us: 

kTvmU
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where k = 1.38 !10-23 J/K is Boltzmann’s constant.  Thus: 
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8. A copper rod of length 50cm and radius 2cm has one end dipped in an ice-water 
mixture and the other in boiling water.  What is the heat flow dQ/dt? 
 
The heat flow through a material with thermal conductivity k, thickness !x, area A, and a 
temperature difference of !T is: 

x
TkA

dt
dQ
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where the minus sign ensures that heat flows from the hot side to the cold side.  Since the 
area of a circle is A=#r2, the temperature difference between boiling water and ice water 
is 100K, and the thermal conductivity of copper is 401W/m!K, here we have: 
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9. How much heat flows out per second through a concrete roof of area 100m2 and 
thickness 20cm if the outside is at 0oC and the inside is at 17oC. 
 
The thermal conductivity for concrete is about 1 W/m!K and as in Prob. 8: 
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So here the heat flowing out of the roof is: 
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10. A gas goes over the cycle ABCA as in Figure 1 where AC is an isotherm and AB is 
an isobar. (Note L stands for Liter, with L=10-3m3.)  Find the (P, V) coordinates of C.  
What is the work done in each part of the cycle and the heat absorbed or rejected in 
the full cycle? 

 
We know the (P,V) coordinates of A, namely PA = 50 kPa and Va = 25 L.  We also know 
that CA is a isotherm which means that A and C are at the same temperature.  Since the 
number of moles of gas isn’t changing in the step AC, we know that the quantity PV is 
constant. 

PAVA = PCVC 
But since we know that VC = 5 L, then: 

# $# $ kPa
L

LkPa
V
VPP
C

AA
C 250

5
2550

---  

Now that we know the (P,V) coordinates of all three points, we can calculate the work 
done by the gas in each step.  The first branch is from point A to B.  This is an isobaric 
process and assuming the gas is ideal: 
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The minus sign here indicates that work is done on the gas in going from point A to point 
B.  The step that goes from B to C is at constant volume and does no work. 

JW CB 0-+  
As previously mentioned, the step going from C to A is isothermal and so the work done 
by the gas is: 
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25ln102550ln 33 , 2012J 

So the total work is: 
JJJJWWWW ACCBBAABCA 1012201201000 -99.,99- +++  

Since the system returns to its original state, its internal energy doesn’t have a net change.  
This means that any work done by the gas must have been absorbed as heat from its 
surroundings.  So the heat absorbed in the full cycle is about 1012 J. 
 
 



11. One mole of a gas with ! = 4/3 goes over the cycle ABCA as in Figure 2 where one of 
AB or AC is isothermal and the other adiabatic.  (You figure out which.)  Write 
down the (P, V, T) coordinates of A, B and C (some of which are already given).  
What is the work done in each part of the cycle and the heat absorbed or rejected in 
the full cycle? 

 
 
Let’s first figure out which of AB and AC is the isothermal and which is the adiabatic 
step.  Along the isothermal step we know that: 

isothermalisothermalAA VPVP -  
But since the pressure and volume is known for point A, and the volumes of both points 
B and C are know and the same: 

# $# $ kPa
L

LkPa
V
VPP
B

AA
isothermal 250

5
2550

---  

Along the adiabatic step we know that: 
;;

adiabaticadiabaticAA VPVP -  
which can be solved for the pressure resulting from the adiabatic step: 
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Since we can see from the diagram that point C has a higher pressure than point B we 
know that AC must be the adiabatic process and AB must be the isothermal process. 
 
Let’s now track the work done in each part of the cycle.  Along the isothermal path from 
A to B: 
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The minus sign here indicates that work is done on the gas in going from point A to point 
B.  The step that goes from B to C is at constant volume and so does no work. 

JW CB 0-+  
The step that goes from C to A is adiabatic and does work: 
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So the total work is: 
ACCBBAABCA WWWW +++ 99- JJJJ 650266202012 -99.,  

Since the system returns to its original state, its internal energy doesn’t have a net change.  
This means that any work done by the gas must have been absorbed as heat from its 
surroundings.  So the heat absorbed in the full cycle is about 650 J. 
 
To complete the (P,V,T) coordinates for the three points, we can make use of the fact that 
TA = TB since they are connected by an isothermal process.  To get values for TA and TC 
we just make use of the ideal gas law: 

nR
PVT -  

So, using the previously found values: 
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Which finally lets us write the final (P,V,T) coordinates for the three points. 
 
Point A:  (50 kPa, 25 L, 150 K) 
Point B:  (250 kPa, 5 L, 150 K) 
Point C:  (427.5 kPa, 5 L, 257 K) 


